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I. Introduction 

The concept of the transition state plays a central role 
both in the formal theory of reaction rates and in the way in 
which the chemist actually visualizes a reaction. The exper­
imental determination of transition state geometries, how­
ever, is a very difficult problem. It is in fact probably fair to 
say that no currently available experiment or combination 
of experiments can yield anything better than a fuzzy view 
of the transition state of any particular reaction. It is natu­
ral, therefore, that there has in recent years been a series of 
attempts to calculate transition state energies and geome­
tries by the various quantum mechanical techniques that 
were developed for equilibrium states. We shall refer to 
many of these computations in the body of this paper. The 
methods employed range from simple Hiickel theory to the 
most expensive ab initio calculations. There have also been 
papers dealing with the special properties of transition 
states and with the problems involved in finding these states 
on a potential surface. 

Murrell and Laidler2a have emphasized the requirement 
that the transition state force constant matrix have exactly 
one negative eigenvalue and have given a formal proof of 
this condition. Murrell and Laidler also tried to use their 
theorem to derive selection rules for transition state geome­
tries. In doing so they made no use of group theory and 
were led into some unwarranted assumptions that destroyed 
the validity of some of their conclusions. These errors were 
later pointed out by Murrell and Pratt.2b 

In this paper we will, like Murrell and Laidler, be looking 
for selection rules and will make extensive use of the Mur­
rell and Laidler (hereafter M-L) theorem. We avoid the 
traps associated with faulty geometric intuition by combin-
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ing the M - L theorem with formal group theory.3 It might 
be mentioned that the M - L theorem also has important 
consequences which go beyond the scope of the present 
paper. It has been shown elsewhere,4 for example, that 
M - L often requires that off-diagonal bond interaction force 
constants play a dominant role in the transition state, in 
marked contrast to their ordinarily minor role in equilibri­
um states. 

Salem et al.5 have defined as "narcissistic reactions" 
those in which reactants and products are related to one an­
other via some improper rotation. They also discuss condi­
tions which make a symmetric transition state probable or 
improbable for these reactions and stress the computational 
advantages associated with knowing the symmetry proper­
ties of the transition state prior to carrying out a computer 
search. These ideas can be generalized. We show that prop­
er as well as improper rotations can convert reactants into 
products. Moreover, as indicated above, one can in many 
cases make rigorous statements concerning the allowed 
symmetry of the transition state for such reactions. 

To a certain extent the computational advantage of 
knowing the symmetry of a transition state is the same as in 
knowing the symmetry of an equilibrium state; it enables 
one to reduce the number of coordinates that must be varied 
in the search for the transition state. Since the number of 
points required to map out a potential surface varies expo­
nentially with the number of internal coordinates and since 
most reactions of interest involve a large number of coordi­
nates the computational gain in reducing the number of 
coordinates can be very great. One practical way of achiev­
ing this gain is through the introduction of symmetry adapt­
ed coordinates. The search for the transition state can then 
be restricted to the subspace of fully symmetric coordinates. 
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It has also been shown6a that for certain search methods, 
the time saving advantage of symmetry is retained even 
when one uses external Cartesian coordinates to describe 
the system, provided one starts the computer search from a 
point with the expected symmetry and exploits the fact that 
the gradient has no nonvanishing asymmetric components. 

The computer search for transition states is influenced by 
symmetry in another, less obvious way. In trying to locate 
an equilibrium state one can always take advantage of ener­
gy minimization techniques. These are not generally appli­
cable to transition states since the latter correspond to cols 
on the potential surface. If the energy gradient can be com­
puted cheaply, as in some of the semiempirical methods, 
one can replace energy minimization techniques by gradient 
minimization techniques without serious inconvenience.615 

In an ab initio calculation the gradient is less readily avail­
able and the problem of locating a col can be severe. If, 
however, the symmetry of the transition state is known and 
if it is also known that the principal direction of negative 
curvature breaks the symmetry of the transition state one 
can go back to energy minimization methods to locate the 
transition state. In this paper we will not be able to guaran­
tee the presence of symmetry elements in the transition 
state. We will, however, provide rules that eliminate certain 
symmetries from consideration. For those transition state 
symmetries that are allowed we also provide criteria for the 
applicability of energy minimization procedures. 

In view of the importance of symmetry, it is somewhat 
surprising that group theory, the natural tool for its investi­
gation, has received so little attention in the study of transi­
tion states. Murrell7 has noted the usefulness of the Jahn-
Teller theorem in eliminating structures with electronic de­
generacy from consideration as transition states. We are 
unaware, however, of any attempt to apply group theory to 
transition states in the manner that has proved so successful 
in analyzing the normal vibrations of equilibrium states. It 
may have been thought that this would lead to little more 
than a repetition of equilibrium state properties. This turns 
out not to be the case. The group theoretical theorems de­
rived in this paper are unique to the transition state. This 
uniqueness can be traced to the fact that in transition state 
theory there is a vital distinction between displacements 
toward the reactant or the product side, whereas in equilib­
rium state theory the question of phase is of relatively little 
importance. 

The theorems themselves are powerful in the sense that 
they often allow one to rule out certain structures as transi­
tion states without the aid of any computation whatsoever. 
In other cases they allow one to decide whether a col which 
has actually been located on some computed surface and 
whose force constants have also been computed can act as a 
transition state for the reaction of interest, or whether it 
must be associated with some different reaction. The power 
implicit in these applications is enhanced by the fact that 
the theorems are independent of any arguments concerning 
electronic structure or any particular method, exact or ap­
proximate, which may be used in the derivation of a poten­
tial surface. In fact the only physical principle we require is 
the energetic equivalence of structures that can be intercon-
verted by a symmetry operation. Aside from this our results 
are theorems in geometry. They arise solely from the con­
cept of a transition state on a potential surface. 

It must be admitted that the strength of our approach is 
also its weakness. While we can often rule out certain struc­
tures as transition states we cannot say without the aid of 
detailed computation whether the actual transition state 
can be reached by a slight distortion of the forbidden struc­
ture or whether it lies on a distant part of the potential sur­
face.8 The abstraction from molecular dynamics which is 

built into our approach also has its penalties. In some cases, 
for example, the statically defined transition state is dy­
namically inaccessible. In such cases the lowest accessible 
path maximum may seem to violate our theorems. How­
ever, this particular difficulty is not peculiar to us. It is 
characteristic of all transition state theory. Somewhat more 
peculiar to us is the strictness with which we define transi­
tion states. In our terminology only the lowest barrier sepa­
rating a given set of reactants and products qualifies as a 
transition state. If two cols are very nearly equal in energy 
and are both accessible, nature may well utilize each of 
them. Unless isotopic substitution could distinguish between 
the product states reached from these cols, however, we 
would regard the higher energy col as a "forbidden" transi­
tion state. 

The organization of this paper is largely self-explanatory. 
The principal theorems and their derivations are presented 
in section III. In section IV we apply the theorems to a se­
ries of increasingly complex reaction systems. These sec­
tions form the heart of the paper. The rather long section II 
sets the stage for these theorems and applications. In this 
section we discuss the general nature of potential surfaces 
and transition states. We argue in particular against the 
possibility of three reaction valleys meeting at a single tran­
sition state since this question is closely related to our theo­
rems. We also take up the troublesome issue of the choice of 
coordinate system and show which aspects of the potential 
surface are coordinate independent and which are coordi­
nate dependent. Section II also contains (in outline form) 
the proof of an important lemma concerning paths through 
the transition state. We use this lemma in section III to de­
rive our symmetry theorems. We conclude section II with a 
discussion of the nature and effects of transition state sym­
metry operations and of the applicability of group theory. 

II. Preliminary Theory 

(a) The Shape of Potential Surfaces. Let \q\, q2, . . | be a 
complete set of nonredundant internal coordinates for a 
reaction system. The potential energy can be and usually is 
thought of as a hypersurface lying above the base plane of 
the q's. Let R and P be two points on this surface corre­
sponding to reactants and products, respectively. If there is 
any potential energy barrier at all for the reaction then 
every path from R to P will pass through a point of maxi­
mum energy. The transition state T (or a transition state, if 
the reaction has several equivalent ones) is the lowest ener­
gy point in the set of all such path maxima. One can abbre­
viate this by saying that the transition state is the lowest 
barrier separating reactants from products. 

The definition of a transition state implies that it is a sta­
tionary point on the potential surface. (A lowest path maxi­
mum cannot lie on the side of a hill, even in many-dimen­
sional space.) This means that the power series expansion of 
the energy about T will have no linear terms. In setting up 
this expansion it is convenient to regard the projection of T 
onto the base plane as the origin of the coordinate system 
and to regard the qi as the Cartesian coordinates of the base 
plane. The energy of a point Q can then be written as 

£Q = -Er + V2q
TFq + V2EQS2 (D 

where F is the transition state force constant matrix 

'«-(i&)„ <2) 

q is the column matrix of internal coordinates, qT is its 
transpose and s is the (base plane) distance between Q and 
T. 

s = v^fq" (3) 
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The remainder factor 6Q contains the effects of higher order 
terms in the expansion. It vanishes as Q approaches T. In 
the vicinity of T, therefore, the energy will be dominated by 
the quadratic term 

£Q
l2> = y2qTFq (4) 

The shape of the surface E^ is controlled by the eigen­
values of F. We denote these by /c, and write the eigenvec­
tors as V/. 

Fv, = ktv, (5) 

The diagonal elements of F represent the curvature along 
the coordinate axes; the geometric vectors v,- corresponding 
to the eigenvectors v,- can be said to point along the princi­
pal axes of curvature; the /c,- are then the principal values of 
curvature. The Murrell and Laidler theorem states that the 
curvature is negative along one and only one of the princi­
pal axes. We assign the subscript zero to this direction and 
refer to vo as the transition vector. Standard variational 
arguments allow us to characterize Vo as the direction of 
most negative curvature. 

The basis for the Murrell and Laidler theorem is simple. 
The point T would be a minimum, and therefore a stable in­
termediate rather than a transition state, if all eigenvalues 
were positive. If two or more eigenvalues were negative the 
surface above the subspace of these coordinates would re­
semble a hilltop. One could then find a path from R to P 
which went around the hill and never passed through energy 
as high as Ej. Since T is supposed to be the lowest barrier 
such a path cannot exist and one can rule out the possibility 
of more than one negative eigenvalue. 

The argument above bypasses the question of a zero ei­
genvalue. If one or more eigenvalues should vanish the 
shape of the potential surface near T would be influenced 
by cubic or higher terms in the power series expansion. In a 
two-dimensional system the existence of one positive and 
one zero eigenvalue would give the quadratic surface E^ 
the shape of a trough with parabolic cross section. The 
trough could conceivably be beii1 so as to give a saddle point 
at T by the fourth-order terms in E. One negative and one 
zero eigenvalue would give an inverted trough. Again this 
could be converted to a saddle by quartic terms. A more in­
teresting case is that in which both eigenvalues in a two-
dimensional system vanish. If the cubic terms in such a sys­
tem are nonzero the surface can resemble "three valleys 
meeting at a point". Surfaces of this nature are also re­
ferred to as "monkey saddles". There are many supposed 
examples in the literature. We discuss one of them (Figure 
1) in detail in section IV. 

The association of a monkey saddle with cubic force con­
stants can be seen quite easily if one converts the cubic en­
ergy expression 

£ l 3 ) = aq? + Qq2* + yq?q2 + 6<?i?2
2 

into polar form. With 6 measured from q\ one finds 

£(3> = (s3/4){(a - 5) cos 39 + (y - /3) sin 39 + 

(3a - 5) cos 6 + (3/3 - y) sin 9} 

This surface has three valleys if the terms in 3d dominate 
the terms in 6. 

One could have four valleys meet at T if the cubic terms 
vanished as well as the quadratic terms. We maintain, how­
ever, that while many surfaces may have the rough appear­
ance of monkey saddles, a fine mesh inspection will always 
reveal the transition from a surface dominated by cubic or 
quartic terms to one dominated by nonzero quadratic terms 
as one approaches the middle of the saddle. If the quadratic 
terms lead to a bump (hilltop) or dimple (lake) at the origin 

one can expect to find a series of transition states connect­
ing the valleys with one another (Figure 1) or with the lake 
(Figure 2a). Other than a hilltop or lake the only remaining 
possibility on a two-dimensional surface is a normal saddle. 
If this should exist in the middle of a monkey saddle one 
can expect a path down from T on one side to enter a fork­
ing region (Figure 2b) beyond which it can pass into either 
of two valleys. The existence of such a forking region is im­
plied by the impossibility of terminating the contours E = 
E-\ which separate the high and low regions of the saddle. 

The argument for the persistence of quadratic terms at 
the transition state is essentially an argument against the 
chance satisfaction of over-determined equations. Its es­
sence has already been stated by Murrell and Laidler. We 
elaborate as follows. At any point on a surface, whether it 
be a stationary point or not, one can always construct a 
force constant (second derivative) matrix and determine its 
eigenvalues. One can then force a change in these eigenval­
ues by moving the point at which they are evaluated. It may 
well be possible by moving the point in an appropriate man­
ner to force one or more eigenvalues to vanish. This free­
dom of motion does not exist, however, when one is also de­
manding that the point of evaluation be stationary. Except 
in the flat asymptotic regions of a reactant or product valley 
the requirement that all components of the gradient vanish 
forces the system point to occupy one of a discrete set of 
sites. It would be an unlikely numerical accident if an eigen­
value should be exactly zero at such a point. One might be 
able to make the. accident take place in a semiempirical 
method designed specifically for this end. In an unbiased 
calculation, however, one does not expect the accident to 
occur any more than one would expect an accidental viola­
tion of the Jahn-Teiler theorem, of the noncrossing rule for 
diatomic potential energy curves, or of the Gibbs phase rule 
in thermodynamics. 

(b) Role of the Coordinate System. Although the signs of 
the principal values of curvature determine the nature of an 
extremum, neither their numerical values nor the directions 
of the principal axes have any precise physical significance. 
Both depend upon the choice of internal coordinates used to 
describe the system. This is why we call Po the "transition 
vector" rather than use the more explicitly physical expres­
sion "decomposition vector". It seems preferable to reserve 
the latter name and also expressions like "reaction coordi­
nate", "reaction vector", etc., for analyses which take the 
dynamics of the system into account. The normal mode of 
imaginary frequency which arises from a Wilson GF matrix 
analysis of the dynamics in the vicinity of T, for example, 
has a unique physical interpretation. It describes the actual 
(classical mechanical) motion on a minimal energy trajec­
tory through the transition state. It seems fair to call this 
the reaction (or decomposition) mode. The nature of this 
motion is, of course, independent of the choice of coordinate 
system. 

The dependence of the k, and v, on the choice of coordi­
nate system can be attributed to the freedom one has in as­
signing potential energy base plane locations to molecular 
configurations. One exercises this freedom each time one 
treats a particular set of internal coordinates as the Carte­
sian coordinates of the base plane. Since most internal coor­
dinate transformations are nonorthogonal they have the ef­
fect of changing the base plane distances between points 
corresponding to different molecular configurations. This 
means that the potential energy contours will ordinarily 
change shape under an internal coordinate transformation. 
This in turn implies not only that the principal axes of cur­
vature will change their direction, but also that the new di­
rections will usually be physically distinct from the old di­
rections. One can understand this as follows. In any coordi-
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Figure 1. (a) Apparent "monkey saddle" on the potential energy sur­
face for C5H5 -. The coordinates are the dihedral angles between the 
three-membered rings. Intraring coordinates have been held constant 
in the calculation. Energies are in kcal/mol. (b) Close-up view of the 
central region of (a) showing a potential energy maximum and three 
equivalent, normal transition states connecting the equilibrium states. 

nate system the contours of the quadratic surface £(2> will 
cross the principal axes at right angles. Suppose the contour 
c and the principal axis x associated with the coordinates 
\q\, a2, • • •! transform into the contour c' and the line x' 
under a nonorthogonal transformation to the coordinates 
\q\ , qz', • • -Y Since angles are not conserved under a nonor­
thogonal transformation there is no reason to expect c' and 
x' to be orthogonal to one another. If they are not, then x' 
cannot lie along a principal axis in the primed coordinate 
system. 

Let us consider the algebra of an internal coordinate 
transformation. Although this is usually nonlinear as well 
as nonorthogonal, we can always regard it as linear provid­
ed we restrict our attention to regions near T where the 
quadratic energy £ ( 2 ) is dominant. Thus, we can write 

q' = aq (6) 

where a is a constant matrix. If the new coordinates are 
nonredundant the matrix a will also be nonsingular and we 
can make use of its inverse. 

b = a"1 (7) 

q = bq' (8) 

The transformation of the force constant matrix follows 
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Figure 2. (a) Potential energy minimum corresponding to a stable in­
termediate I at the confluence of three equivalent reactant valleys. The 
valleys are connected with I via three normal saddle points. The + and 
— signs indicate regions of high and low potential energy, (b) Possible 
shape of a potential surface at the confluence of three inequivalent 
reactant valleys. T is the transition state joining V\ with V2 and Vi. 
The forking point F, which lies lower in energy than T, has been (some­
what arbitrarily) identified with the transition state joining V2 and Vi. 
The dotted lines, which are only approximately tangent to the contours 
E = Er, intersect at a point which could be interpreted as the center of 
an asymmetric monkey saddle in a far-off view of the surface. 

from a comparison of the expressions for £ ( 2 ) in the two-
coordinate systems. 

£(2> = y2q'TF'q' (9) 

F ' = bTFb (10) 

Note that (10) is not a similarity transformation. 
The kinetic energy of the system is 

T = ViefG-1* (11) 

The matrix G -1 undergoes the same transformation as F 
Its inverse, however, undergoes the transformation 

G' = aGaT (12) 

The product matrix GF, therefore, undergoes the similarity 
transformation 

(GF)' = a(GF)a4 (13) 

The difference between (10) and (13) provides an algebraic 
explanation for the difference in the transformation proper-
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Figure 3. Schematic representation of the possibility of reaching the 
tail of the transition vector by a path which lies below Er-

ties of the normal modes of vibration and the principal axes 
of curvature. 

The eigenvalues of F ' satisfy the relation 

life/ = d e t { F ' } = (de tb^nfe j (14) 
• i 

Since det jbj can differ from unity when b is nonorthogonal, 
eq 14 implies that the principal values of curvature can 
change with a change of internal coordinates. On the other 
hand, since det jbj ^ 0 as long as both sets of coordinates 
are nonredundant, eq 14 also implies that the argument 
concerning the nonexistence of zero eigenvalues is indepen­
dent of the choice of coordinate system. One can go further. 
One can always regard the q{ as having evolved continuous­
ly from the q, except perhaps for a permutation of sub­
scripts. If we apply (14) to each stage of this evolution we 
can conclude that the sign of the product of the eigenvalues 
remains constant and the product does not go through zero. 
This implies that the number of negative eigenvalues is con­
stant, a comforting conclusion in light of the coordinate de­
pendence of the detailed features of the surface. 

(c) Reaching the Tail of ?o. The following lemma will be 
useful in proving the theorems of section III. Given that T is 
a transition state for some reaction and that Vo is the transi­
tion vector (in whatever coordinate system we happen to 
choose), we claim that it is always possible to move from 
reactants R to some point B lying along Vo at a finite dis­
tance from T on the reactant side, without ever going as 
high in energy as Ej. The concept and the method of proof 
are both illustrated in Figure 3. 

The smooth curve from R through T to the product re­
gion represents a many-dimensional reaction path having T 
as a proper maximum. Point A lies on this path and inside 
the base plane hypercircle C. The role of this hypercircle is 
to mark off a boundary inside which the surface is essential­
ly quadratic. Point B is the projection of A onto the direc­
tion of the transition vector. If one follows the straight 
(dashed) line from A to B the quadratic energy £( 2 ) will de­
crease monotonically since all of the contributions from the 
principal coordinates of positive curvature will go steadily 
to zero while the negative contribution from the transition 
coordinate remains constant. This suggests that the modi­
fied path R to A to B meets the demands of our lemma. A 
rigorous proof that the total energy E on this path never 
goes as high in energy as Ej requires careful "epsilonic" 
consideration. Basically, what one must show is that non-
quadratic terms do not upset the argument outlined above. 
One can do this by giving some attention to the radius of 
the hypercircle C. The relevant details are included in the 
Appendix. 

In applying the above lemma we shall find it convenient 
to shorten vo in such a way that B lies at the tail while the 
center of Vo lies at T. 

(d) Symmetry Operations. In ordinary vibration theory 
the equilibrium configuration not only determines the point 

" « & > 

Figure 4. (a) Conversion of one ozone isomer to another by rotation of 
the atomic displacement vectors. The standard point group symbol A 
shows the location of the symmetry axis of the Du, reference structure, 
(b) The same isomerization, produced this time by reflection of the dis­
placement vectors in a symmetry plane (dotted line) of the reference 
structure. 

group of the molecule, it also provides a set of labeled refer­
ence positions to which one can attach unlabeled displace­
ment arrows showing the atomic positions in any nonequi-
librium configuration. As Schonland,9 McWeeney,10 and 
other authors of group theoretical texts point out, the unla­
beled arrows can be regarded as the objects of the symme­
try operations. The effect of a rotation or reflection of these 
arrows is to convert one distorted molecular configuration 
into another of the same energy. 

Our definition of a symmetry operation is essentially the 
same as that in vibration theory. The only real difference is 
in the choice of reference state. Rather than the equilibrium 
configuration we will be using whatever symmetric struc­
ture is under consideration as a possible transition state. 
The displacement arrows can then point to the equilibrium 
locations of the atoms in the reactant or product stages of 
the reaction. Alternatively, they could represent the short 
displacements from the transition state characteristic of the 
quadratic portion of the potential surface near T, or they 
could indicate any arbitrary point on a reaction path from 
R to P. In addition one could use a particular set of dis­
placement vectors to represent the many-dimensional tran­
sition vector, just as in the analogous normal mode problem. 

Figure 4 illustrates our meaning. The solid circles repre­
sent atomic locations in a symmetric, isotopically substitut­
ed ozone structure. The displacement arrows point to the 
equilibrium locations of the atoms in two different equilibri­
um states (open circles) which serve as reactants and prod­
ucts for the pseudorotation." Step 1 in Figure 4a is a rota­
tion of the entire structure about the threefold symmetry 
axis. The mathematical effect of this rotation on the Carte­
sian displacement coordinates can be expressed as 

rot 
'RX16N 
RX17 

^RX18/ 

/ x t e \ 

= (I(x)R) X17 

Vx 1 8 , 
(15) 
(16) 
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where R is the 3 X 3 orthogonal matrix representing the 
rotation of an arbitrary vector, I is a 3 X 3 identity matrix, 
and the cross ® implies direct product multiplication. Since 
step 1, like every rotation or reflection, leaves all interatom­
ic distances unchanged, it can have no effect on the poten­
tial energy. Step 2 can be thought of as a back rotation of 
the reference framework. However one pictures this step, its 
effect is to permute nuclei of like charge among themselves. 
This step changes individual (labeled) interatomic dis­
tances, but again leaves the energy unchanged. The net re­
sult of steps 1 and 2 is a rotation (£3) of the displacement 
vectors which leaves the labels behind. The mathematical 
representation of this operation is 

/x16\ (/ooi\ ) /x16\ 

= T ( C 3 H X j M (18) 

A general symmetry operation O would be represented by 

T(O) = P(O) (X) R(O) (19) 

This detailed mathematical representation helps to clarify a 
surprising feature of the diagrams. In Salem's work it seems 
to have been assumed that only a reflection or other im­
proper rotation could convert chemical reactants into prod­
ucts. An example of such a conversion is shown in Figure 
4b. Figure 4a shows, however, that the same conversion of 
one ozone molecule into another can be achieved by a prop­
er rotation of the displacement vectors. This result is not ex­
ceptional. The majority of the examples discussed in this 
paper involve the conversion of reactants into products by a 
proper rotation. The reason this is possible is that in each 
case the "rotation" actually includes a permutation that 
changes interatomic distances between labeled atoms. 

In practice we have found intuition to be treacherous 
when we are trying to determine the effect of a transition 
state symmetry operation on a reactant molecule. We have 
usually resorted to models and drawings of the type de­
scribed above. One rule which allows us to bypass these 
drawings is the following: the operation O will leave reac­
tants unchanged if the transition state T and reactant state 
R "share" 6 as a covering operation. In saying that 6 (e.g., 
C3, a, . . .) is "shared" we mean not only that a covering op­
eration of the type indicated is present in both R and T but 
also that it produces the same atomic permutations in each 
state. The validity of this rule is easily proved by reflection 
on the formal definition of a transition state symmetry op­
eration given above. 

(e) Symmetries of the Principal Axes. The symmetry 
properties of the principal axes of curvature are (like their 
directions) coordinate dependent. If one chooses symmetry 
adapted internal coordinates, by which we mean coordi­
nates which generate a fully reduced unitary representation 
of the reference state point group, then the force constant 
matrix will be block diagonal and each eigenvector will 
belong to one of the irreducible representations of the point 
group. The proof, which depends upon Schur's lemma and 
the invariance of the electronic energy under a symmetry 
operation, is given in detail by McWeeny.12 Since the prin­
cipal axes retain their geometric significance under a uni­
tary transformation the symmetry properties of the eigen­
vectors will be preserved if one changes from symmetry 
adapted internal coordinates to any other set connected 
with the symmetry adapted set by a unitary transformation. 
The following simple criterion determines the existence of 

such a transformation; there exists a unitary transformation 
from a set (q\, qj, . . .) to a symmetry adapted set of coordi­
nates if and only if the group representation generated by 
the qi is itself unitary.13 This condition will not always be 
satisfied in practice. When it breaks down one has no guar­
antee that the eigenvectors of F will belong to definite sym­
metry species. This means that if one constructs a potential 
energy surface for a system without special regard for the 
choice of coordinate system one may well find that the tran­
sition vector fails to satisfy the symmetry conditions derived 
in section III. This failure, however, will be only formal. 
The selection rules based on the theorems depend only on 
the underlying symmetry of the physical system and are in­
dependent of the coordinate system.14 

IH. Theorems 
We now prove a series of theorems concerning the sym­

metry species of the transition vector. In each case we as­
sume that the coordinate system has been chosen so that the 
eigenvectors of the force constant matrix belong to symme­
try species of the full transition state point group. Other 
limitations on the applicability of the theorems and inter­
pretations of their exact meaning are given with the proofs. 

I. The transition vector cannot belong to a degenerate 
representation of the transition state point group. 

II. The transition vector must be antisymmetric under a 
transition state symmetry operation which converts reac­
tants into products. 

Corollary A. No structure can serve as a transition state 
for a given reaction if a C3 rotation or other odd degree 
symmetry operation associated with the structure converts 
reactants into products. 

Corollary B. If the transition state point group includes a 
symmetry operation which converts reactants into products 
then the energy of the transition state will be a local mini­
mum in the subspace of coordinates belonging to the wholly 
symmetric representation of the group. 

III. The transition vector must be symmetric with re­
spect to a symmetry operation which leaves either reactants 
or products unchanged. 

Corollary. If each symmetry operation in the transition 
state point group leaves either reactants or products un­
changed, then the transition state will be a saddle point with 
one negative principal value of curvature in the subspace of 
the fully symmetric coordinates as well as in the space of all 
coordinates. 

IV. If the transition vector for the reaction Ri —*• Pj is 
symmetric under a symmetry operation O which converts 
reactants Ri into the equivalent reactants R2 and P] into 
P2, then there exist lower energy transition states for the 
reactions Rj —» R2 and Pi —• P2; if the transition vector is 
antisymmetric under O then there exists a lower energy 
transition state for the reaction Ri -»• P2. 

Theorem I (hereafter simply I) is an immediate conse­
quence of the requirement that a transition state have only 
one principal axis of negative curvature. While this is fairly 
obvious the scope of the theorem may not be. Under the 
heading of "degenerate" representations we include not 
only the twofold or higher dimensional irreducible represen­
tations of the point group but also any complex one dimen­
sional representations the group may happen to possess. 
The reason is that in the diagonalization of £ ( 2 ) a complex 
representation can only appear in conjunction with its com­
plex conjugate and the two then have equal eigenvalues.15 

Examples of such symmetry species are the so called E rep­
resentations of the point groups C3 and C4 and the E\ and 
E 2 representations of Ce-

Our proof of II is best explained through the use of Fig­
ure 5a. The solid line represents a (multidimensional) path 
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Figure 5. Diagrammatic basis for the proofs of theorems II and III. 

leading from R through the transition state T to the prod­
ucts P. The path is chosen so that every point on the way to 
T lies lower in energy that Ej. The lemma established in 
section II allows us to demand that this path also follow the 
transition vector for some short but finite distance on each 
side of T. Let 6 be some transition state symmetry operator 
which transforms R either into P or into products P' that 
can be converted into P by following some path (dotted) 
that requires either no expenditure of energy or at most an 
amount known to be less than the barrier height for the 
reaction. (In a decomposition reaction, for example, P' 
might differ from P in the relative orientation of separated 
molecules. Alternatively, the dotted path might involve low 
energy conformational changes.) The application of O to 
the solid curve will convert each point into an energetically 
equivalent point on the path (dashed line) joining P' and T. 
Let us suppose that contrary to II the transition vector were 
symmetric under O. The paths R -* T and P' —* T would 
then merge at the tail of the transition vector where the en­
ergy is definitely less than Ej. If this were the case, how­
ever, we could follow a path R -* P' -* P (dotted line) from 
reactants to products which at no point went as high in en­
ergy as Ej. Since this contradicts the supposition that T is 
the lowest barrier the transition vector cannot be symmet­
ric. Since I rules out all degenerate representations the 
transition vector must be antisymmetric under O, as was to 
be proved. 

HA can be proved as follows. Let T be some state under 
consideration as a transition state for the reaction of inter­
est and let O be some odd degree symmetry operator associ­
ated with T that converts reactants into products in the gen­
eralized sense described above. If T is actually a transition 
state then (from II) 

Od0 = -V0 (20) 
and, further 

6 2 "% = -v0 (21) 

for every integer n. On the other hand, if O is odd then 
there exists some n such that 

O2"*1 = / (22) 
where / is the identity operator, and this implies 

62n+1?0 = +^0 (23) 
which contradicts (21). One can avoid this contradiction 
only by rejecting T as a transition state. 

The significance of HB is primarily computational. It 
provides one with a sufficient criterion for the use of energy 
minimization techniques in the search for a transition state. 
The proof of the corollary is almost immediate. If T is al­
lowed only a single principal axis of negative curvature, and 
if II requires that this lie in a direction which destroys the 
symmetry of the point group (as implied by the antisymme­
try of the transition vector), then the curvature must be pos­
itive in all directions which retain the full symmetry of the 
structure and the energy must be a minimum in the sub-
space of these directions. 

There is one restriction on the applicability of II and its 
corollaries. In developing the argument we implicitly as­
sumed that a minimal energy path need pass through only 
one point with energy as high as Ej. If each minimal path is 
in fact forced to to go through a series of equivalent transi­
tion states T], T2, . . . , as in some symmetric multi-step 
reactions, then the lemma of section II and the analysis 
above can be applied directly only to Ti, the first transition 
state encountered along the path from R to P. (The require­
ment E < Ej would not be satisfied in a path joining R to 
T2.) Even in this case, however, the equivalence of T] and 
T2 would ordinarily allow one to transfer information about 
one state into information about the other. 

Figure 5b is a theorem III analog of Figure 5a. We sup­
pose that some transition state symmetry operator 6 con­
verts R either into itself or some state R/ that can be 
reached from R by a low energy path. Since Vo cannot 
belong to a degenerate representation (theorem I) it must 
be either symmetric or antisymmetric under O. The di­
agram shows what happens if contrary to III the transition 
vector is assumed to be antisymmetric. The vector Vo (solid 
arrow) is converted into — vrj (dashed arrow) by O and the 
path joining R with the tail of Po is converted into the ener­
getically equivalent dashed path joining R' with the tail of 
—vrj. If this should occur the system could move from R to 
P via the dotted path which is lower at all points than Ej. 
Since T is the lowest barrier between reactants and prod­
ucts such a path cannot exist and the supposed violation of 
III cannot occur. 

The above argument takes care of the case OR = R'. A 
completely similar argument shows that vo must also be 
symmetric under any operation that either leaves P un­
changed or converts P into a product state P' that can be 
reached from P by a low energy path. We omit the details. 

Theorem III (like theorem II) requires modification if 
every minimal energy path joining R and P passes through 
two or more equivalent transition^ states. If this should be 
the case then the reactant form (OR = R') of the theorem 
is applicable only to the last transition state encountered on 
the path from R to P, while the product form (OP = P') is 
applicable only to the first state on this path. 

The corollary to III can be proved in much the same way 
as IIB. The information it gives, however, is somewhat neg­
ative and somewhat indefinite. On the one hand it provides 
the discouraging information that energy minimization 
techniques cannot be used in the search for the transition 
state. On the other hand, in stating that the transition state, 
if it exists at all in the space of the totally symmetric coordi­
nates, must be a col in that space, it does not provide a cri­
terion for telling which col of the many that might be en­
countered is the transition state. A high energy col which 
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separates reactants and products in the symmetric subspace 
may be avoidable when one moves out of the subspace 
whereas another, lower energy col may not be. 

The subject matter of theorem IV differs from that of 
theorem III in that we make no assumption about the paths 
joining the reactant states Ri and R2 or the product states 
P1 and P2. In fact the theorem is interesting only when one 
of the processes Rj —»• R2 or Pi —» P2 is thought to involve a 
significant activation energy. If it is known in advance that 
neither of these processes involves any serious energy ex­
penditure then IV provides no information beyond that al­
ready implied by II or III. With this understood, we can 
still derive IV using the same arguments that led to the ear­
lier theorems. By II we know that if T, the transition state 
for Ri —• Pi, were also to be the transition state for Ri —* 
R2 then the transition vector would have to be antisymmet­
ric under O. If the transition vector is actually symmetric 
we can conclude, just as in the argument leading to II, that 
there is a path joining Ri to R2 that lies lower in energy 
than Ej. The remaining parts of the theorem can be proved 
in a similar manner. As usual, however, one must be cau­
tious in applying the theorems to reactions in which every 
minimal energy path from Ri to Pj is forced to go through 
two or more equivalent transition states. When this occurs 
the conclusions dealing with Ri —• R2 and Ri —• P2 apply 
only to the first transition state encountered on the way 
from Ri to Pj, and the conclusion dealing with Pi —• P2 is 
applicable only at the last transition state. 

It should be noted that there are cases in which two or 
more reactions share a transition state accidentally, i.e., 
without being compelled to do so by symmetry. Although 
group theory provides no special guidance in these situa­
tions it should be clear from the above discussion that the 
sharing of a transition state by say A —• B and C —>• D 
implies the existence of a lower energy transition state for 
either A — C and B - • D or for A •— D and B -* C. 

IV. Applications 

The practical significance of the theorems derived in the 
previous section is best illustrated by a series of specific ap­
plications. Those discussed below (by no means an exhaus­
tive group) are arranged according to their gradually in­
creasing complexity. 

a. Systems with a Threefold Axis. These provide the sim­
plest applications of the theorems. Of the "transition 
states" discussed below all but the last is forbidden by cor­
ollary A of theorem II. 

1. The Psuedo-Rotation of Ozone. This reaction, which 
we used in section Hd to illustrate the rotation of reactants 
into products, was proposed by Berry1 la in 1960. The Z)3/, 
structure is clearly a forbidden transition state. Berry actu­
ally proposed a direct conversion of one isomer to another 
via an asymmetric transition state. There is an alternative 
possibility. Since ozone is isoelectronic with cyclopropane it 
is not unreasonable to suppose that the Z)3/, structure is a 
stable intermediate and that the reaction really involves two 
steps as on the surface shown in Figure 2a. The transition 
states could then have Cjv symmetry. This idea is supported 
by recent ab initio calculations performed by Hay and 
Goddard. l l b 

2. The H + H2 Reaction. It is well established that the 
transition state for this classic reaction is linear. Several 
groups, however, have considered the possibility of an isos­
celes triangle transition state and have investigated apex 
angles between 180° (linear H3) and 60° (equilateral H3, 
Z)3/, symmetry).16 The rotation of reactants into products, 
which is shown below, implies that the equilateral triangle 

- C A T 
H. ^ t 

C3 .MT 
=> Ha«TA! 

is a forbidden extreme. Actually, it has always been known 
that the ground state determinantal wave function for the 
Z)3/, structure would contain a singly occupied degenerate 
orbital and that this would lead to a Jahn-Teller instability. 
The equilateral triangle itself, therefore, has never been re­
garded as a serious candidate for the transition state. What 
the calculations have shown is that there is no stationary 
state for any apex angle other than 180°. Isosceles triangles 
with angles other than 60° would all be symmetry allowed 
transition states.17 

As far as theorem IIA is concerned the reaction Ha~ + 
HbHc -» H a H c + H b - is exactly analogous to the neutral 
atom reaction. No more thought is needed to rule out the 
equilateral triangle in one case than in the other. It turns 
out that the Jahn-Teller theorem also rules out Z)3/, in this 
case. Its applicability is less obvious, however, than in the 
case of the neutral atom reaction. One must make a de­
tailed comparison of electron repulsion terms for the differ­
ent states in the ground configuration before one can con­
clude that the state with the Jahn-Teller instability is in­
deed the ground state of the system. 

The contrasting nature of the information provided by 
HA and the Jahn-Teller theorem is worth noting. In each 
of the above examples (O3, H + H2, H - -I- H2) theorem 
IIA eliminates the possibility that the Z)3/, structure might 
be a lowest col connecting reactants and products; the Jahn-
Teller theorem, when it is applicable (H + H2, H - + H 2), 
implies that the Z)3/, structure cannot even be a stationary 
point. 

3. The Four-Center H2 + H2 Reaction. Shock tube stud­
ies18 suggest that this reaction occurs with an activation en­
ergy of about 44 kcal. As yet, however, no computed struc­
ture has an energy nearly low enough to account for the 
reaction. Two structures which have been the subjects of ex­
tensive calculations19 could have been eliminated on sym­
metry grounds. These are the centered equilateral triangle 
(Z)3/,) and tetrahedral (Td) complexes. Both contain a 
threefold axis which rotates reactants into products. (We 
omit the diagrams since no new principles are involved.) 
Both also appear to be forbidden by the Jahn-Teller theo­
rem. Although a square (D^h) transition state appears to 
have excessively high energy it is at least acceptable on 
symmetry grounds. We reserve its discussion for the next 
section. 

4. The Isomerization of Methylene Cyclopropane. The 
reaction is shown below. 

C* H2 

C*H, 

/V 
H2C C CH2 

Chesick,20 who was the first to study the isomerization, sug­
gested that the planar (D3/,) structure 1 might serve either 

VH 

H—C C—H 
/ \ 

H H 
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Figure 6. Effect of symmetry operations on the internal rotation of eth­
ane. The figures on the extreme left are ordinary Newman projections 
of two different rotamers. The immediately adjacent figures show these 
same rotamers in relation to the staggered (Dn,) transition state (see 
text). 

as intermediate or as transition state. This suggestion is no 
longer in favor.21 Corollary A rules out 1 as a transition 
state. One would also expect it to exhibit a Jahn-Teller in­
stability, and this is confirmed by calculations performed by 
Borden.22 

5. The Isomerization of (CH)s~. The reaction 2 has been 
the subject of an extended Hiickel calculation by Stohrer 

-=^1--^ 
and Hoffmann.23 Their calculations, which we have repeat­
ed and which we illustrate in Figure la, seemed to imply 
that the transition state had a threefold axis of symmetry 
and occupied the center of a monkey saddle. Since this con­
clusion was in direct conflict with the claims made herein, 
we have continued the calculations (still using the Stohrer 
and Hoffmann method) over a fine grid in the center of the 
supposed monkey saddle. The results (Figure lb) show that 
the symmetric structure corresponds to a potential energy 
maximum and that there are three equivalent transition 
states, each noticeably displaced from the central maxi­
mum.24 

6. Internal Rotation in Ethane. It is almost certain that 
the eclipsed (D^t1) structure is the transition state for the 
conversion of one form of staggered ethane into another. 
Contrary to what intuition might suggest this does not con­
stitute a violation of corollary A. Since the threefold axis of 
the transition state is shared with the reactant state it fol­
lows that rotation about this axis must leave reactants un­
changed. This is verified in Figure 6. On the other hand, the 
vertical planes of symmetry which are present in both the 
staggered and eclipsed conformations are not "shared" by 
these conformations in the special sense defined in section 
Hd. When regarded as covering operations the reflections 
<rv produce different nuclear permutations in the different 
conformations. One has no reason to conclude therefore 
that a transition state (eclipsed configuration) <xv will leave 
reactant state displacement vectors unchanged. Figure 6 
shows that each transition state a actually converts a given 
staggered conformer into another, i.e., converts torsional 
reactants into torsional products. 

One can show that the reflection <7h also converts reac­
tants into product. The transition vector therefore must be 
symmetric under C3 and antisymmetric under Sv and S-j,-
This information is sufficient to assign it to the symmetry 
species A/ ' . It is interesting that eclipsed ethane has only 

* T ' <= * 
^ ; nr 

d v d 

*•; -H 
Ih 1 Uv 

b ! d > 

H,Hb + HcHd -• H,HC + HbHd 

Figure 7. Symmetry elements in a hypothetical D4« transition state for 
a four-center hydrogen exchange reaction. Planes are indicated by dot­
ted lines, axes by dashed lines and standard point group symbols. 

one internal coordinate with this symmetry and that this 
corresponds to pure internal rotation. The transition vector, 
in other words, contains no contribution from bond stretch­
ing or bending; it is purely torsional. 

b. Transition States with a Fourfold Axis. These form an 
interesting and rather surprising pattern. Each of the "tran­
sition states" discussed below is "allowed" as far as symme­
try is concerned. In the second and third examples, how­
ever, the acceptance of the symmetric structure as the tran­
sition state for the reaction of interest implies the existence 
of a lower energy transition state for a closely related reac­
tion. 

1. Square Planar H4. Figure 7 shows the displacement 
vectors for reactants and products and also labels the sym­
metry elements of the supposed D4/, transition state. It is 
relatively easy to see that the reactant vectors are converted 
into product vectors by C4*

1 and S4=
1=1, by each of the a& re­

flections and each of the C2" rotations; each set of vectors is 
left invariant by C4

2, by the ov's and CY's, by a^ and the in­
version i. Taken in conjunction with theorems II and III 
these symmetry properties imply that the transition vector 
must belong to the symmetry species B) g. Since square pla­
nar H4 has one internal coordinate with this symmetry the 
transition state is "allowed". 

2. The Olefin Metathesis Reaction. The observed reac­
tion is 

R]CH=1CHRg R]CH R^CH 

R|CH—CHR2 R^CH R^CH 

This takes place in solution with the aid of a complex tung­
sten catalyst. According to Calderon25 the most likely 
mechanism involves the asymmetric absorption of the two 
olefinic molecules, passage through a symmetric transition 
state to another asymmetric state, and then desorption of 
the products. We analyze the reaction under the assumption 
that the transition state has C4v symmetry. We assume also 
that this state has higher energy than any transition state 
blocking the weak attachment of the second olefin once the 
first is strongly absorbed. Under these assumptions it is le­
gitimate to classify reactants and products as shown in Fig­
ure 8. 

In contrast to the H4 reaction there are three distinct 
product states, each of which can be reached from the 
square pyramid by a path which is energetically equivalent 
to one leading back to reactants. One of these products is 
that for a simple displacement reaction. The other two are 
intermediates for the metathesis reaction. 

Since C4v obviously cannot have a real 1 X 1 representa­
tion which is antisymmetric under C4

2, the square pyramid 
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Figure 8. Symmetry relations between reactants and products in the 
olefin metathesis reaction. 
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Figure 9. A possible reaction scheme for the olefin metathesis reaction 
and the related catalytic displacement reaction. The heavy arrows in 
the central figure show a transition vector of Bi symmetry. 

cannot be the transition state for the displacement reaction. 
Consultation of a set of character tables shows that it can 
be the transition state for formation of the metathesis inter­
mediates and that if it is, then the transition vector must 
belong to the Bi representation. A normal mode with this 
symmetry is indicated in the center of Figure 9. This di­
agram also shows how a complex which can decompose 
with equal ease into four different states can be an "al­
lowed" transition state for the interconversion of certain 
pairs of states, while it is "forbidden" as a transition state 
for the interconversion of other pairs. This is possible if a 
path downhill from the complex encounters a forking region 
beyond which it can pass into either of two equilibrium 
states. Geometries corresponding to possible forking points 
are shown on the left and right sides of the diagram. If these 
forking points exist and have lower energy than the transi­
tion state then it will be possible to carry out a displacement 
reaction (vertical path on the diagram) without going 
through an energy as high as Ej. It is in this sense that the 
square pyramid is forbidden as a transition state for the dis­
placement reaction. On the other hand the metathesis reac­
tion requires passage from the left to the right side of the 
diagram and the transition state is allowed for this process. 

Figure 10 shows how the fourfold symmetry of the poten­
tial surface about T is consistent with the reaction scheme 
outlined above. The right side of the diagram shows the po-

Figure 10. Potential energy surface for the olefin metathesis reaction 
scheme shown in Figure 9. The forking paths shown in the inset are 
perpendicular to one another. The right side of the main diagram 
shows the surface above the ey~B\ plane; the left side shows the surface 
above the ex-B\ plane. The forking points F and F' correspond to the 
rectangular structures in Figure 9. 

tential surface above the Bi, ey internal coordinates; the left 
side shows the potential surface above the Bi, Cx coordi­
nates. Successive 90° rotations of the displacement vectors 
for point 1 about the transition state convert them into the 
vectors for points 2, 3, 4, 1, etc. 

3. Methane Substitution. The hot atom reaction 
T + CH4 —«- CH3T + H 

3 
has been the subject of a great many experimental studies. 
One rather firm conclusion, based on experiments with sub­
stituted methane, is that the reaction takes place almost ex­
clusively with retention rather than inversion of configura­
tion.26 Whether this actually indicates a lower barrier for 
the retention reaction or whether it requires a dynamic ex­
planation is not completely certain. 

Parts of the potential surface for reaction 3 have been 
studied at the semiempirical (CNDO) level by Weston and 
Ehrenson27 and at the ab initio level by Morokuma and 
Davis28 and by Ehrenson and Newton.29 

Our interest lies in the suggestion by Weston and Ehrens­
on that the transition state for the retention reaction might 
be a CAV complex. The lower path in Figure 11 shows one 
retention reaction via this complex. The full reaction 
scheme shown in Figure 11 is closely analogous to that for 
the metathesis reaction in Figure 8 and can be analyzed in 
the same way. The Cjv complex is a forbidden transition 
state for the inversion reaction. It is allowed for either of 
the configuration retention reactions. However, if it is the 
transition state for these reactions, then there necessarily 
exists a lower energy path for the inversion reactions. The 
obvious route for the lower energy reaction is Walden inver-

H 

T + CH4 -H TCH3 + H 

H H 
sion. The trigonal bipyramid (D->,h) transition states for the 
Walden inversion could serve as the downhill forking points 
(compare Figure 9) on each side of the C*v structure. Pas­
sage from one forking point to another would then be a typ­
ical pentacoordinate pseudo-rotation, and this is exactly 
what Weston and Ehrenson proposed. 
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Figure 11. Symmetry relations in the reaction T + CH4 —- H + TCH3 
via a Cs,v transition state. 

The above reaction sequence was favored by the Weston-
Ehrenson calculations which showed only a very small bar­
rier for the pseudo-rotation. The ab initio calculations on 
the other hand imply that the energy difference between the 
Z>3/i and Ctv structures is actually quite large (~30 kcal). 
Whatever the mechanism or numerical data our conclusions 
stand. The C$v structure cannot be the lowest barrier for 
the general displacement reaction; it could be the transition 
state for the retention reaction. 

c. The Inversion of Cyclohexane. It is generally agreed 
that the interconversion of the two equivalent chair forms of 
cyclohexane proceeds through an intermediate boat struc­
ture. It is also thought that the boat undergoes pseudo-rota­
tion from one stable twist boat (D2) form to another and 
that the classical (C2v) boat probably serves as transition 
state between successive twist forms. What is less certain is 
the nature of the transition state joining the chair with the 
twist boat. The two structures currently thought to be ac­
ceptable are shown in Figure 12 along with the chair and 
twist boat forms. Since the chair is invariant to both the re­
flection <Tj and the rotation 62 it follows that if either of 
these structures is to serve as chair —«• boat transition state 
then the transition vector would have to be totally symmet­
ric. 

MINDO/2 calculations have recently been carried out 
on these and other cyclohexane structures.30 According to 
MINDO/2 the C8 and C2 structures have practically the 
same energy, each is a saddle point with one principal axis 
of negative curvature, and the transition vectors for the two 
structures belong to the Ai representations of their respec­
tive point groups. Either, therefore, could serve as transition 
state. In fact, it was concluded that the entire ridge joining 
the two states could be regarded for practical purposes as 
the transition state since the energy was so nearly constant 
on this ridge. 

To what extent these conclusions will hold up on a more 
accurate potential surface is a matter of speculation. If one 
adds the implications of theorem IV to those of II and III, 
however, one can extract information concerning the cyclo­
hexane system which is independent of the quality of the 
surface. 

Suppose that the Cs structure is in fact the transition 

O O 

c 
Figure 12. Probable transition state structures for the conversion of 
chair cyclohexane into a metastable twist boat. Reactants and products 
are shown in conventional perspectives which differ from that of the 
transition states. The symmetry axis shown for the (D2) twist boat is 
shared with chair cyclohexane and the Cz transition state. The symme­
try plane of the Cs structure, shown via its intersection with the carbon 
framework, is shared with the chair. 

state for the chair —* twist boat reaction. Figure 12 shows 
that while the chair is invariant under as, the boat is not. 
One can show that it is converted into the product of a 
pseudo-rotation reaction. As pointed out above the invar-
iance of the chair under as requires that the transition vec­
tor belong to the Ai representation of C3. Theorem IV 
implies therefore that the barrier to pseudo-rotation (pre­
sumably the classical boat) must lie lower in energy than 
the Cs structure on any surface for which the latter serves 
as the transition state separating chair from twist boat. The 
natural expectation then is that the classical boat will corre­
spond to a downhill forking point separating equivalent 
twist-boat products. 

The Ci structure is less interesting from the present view­
point. Since the chair and twist boat are both invariant 
under C 2 one can draw no conclusions about the pseudo-
rotation from a consideration of this structure. 

The classical (Civ) boat is somewhat more interesting. 
Although chemical arguments may make the role implausi­
ble it is not obviously impossible for a structure of this sym­
metry to serve as transition state for the chair to twist boat 
reaction. If it were of course there would be no need for the 
twist boat to act as intermediate for the chair inversion. A 
symmetric continuation of the uphill path from chair to 
classical boat would provide a downhill path to inverted 
chair. We can prove more than this, however. By combining 
theorems III and IV as in the case of the Cs structure dis­
cussed above, we can show that if the classical boat were 
the transition state for the chair to twist-boat reaction then 
there would exist lower energy transition states for both the 
chair inversion and the twist-boat pseudo-rotation. The 
argument follows. 

Theorem III allows us to assign the transition vector to 
the totally symmetric Ai representation since (1) the C 2 
axis is shared by the classical and twist boats, (2) the chair 
is invariant to the reflection h\ (see Figure 13), and (3) 
symmetry under the above operations implies symmetry 
under ai. Theorem IV then tells us (1) that there is a lower 
energy path for the chair inversion since C 2 and hi both 
convert chair into inverted chair and (2) that there is a 
lower energy path for pseudo-rotation of the twist boat 
since both b\ and S-2 convert one twist boat into another. 

d. The Cope Rearrangement. The Cope rearrangement 4 

0 - [<:::>] - o 
4 
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Figure 13. The chair —<- twist-boat reaction. The upper part of the di­
agram shows reactants and products in relation to a classical boat 
"transition state". The lower diagram shows the same structures in 
conventional perspectives. 

is one of a family of closely related isomerizations. In 
Woodward-Hoffmann31 terminology the Cope rearrange­
ment itself is a [3,3] sigmatropic shift. The related isomer­
izations include the [1,3] sigmatropic shift, methylene rota­
tion about one or both double bonds, and rearrangements 
through intermediates such as bicyclo[2.2.0]hexane. 

One can conceive of several symmetrical forms for the 
transition state in 4. Traditional opinion, based on the 
Doering-Roth experiments,32 has favored a cyclohexane-
like chair of C2;, symmetry. This conclusion has recently 
been questioned by Goldstein and Benzon.33 Our approach 
is to ask which (if any) of the possible isomerizations of 
1,5-hexadiene a given symmetrical structure might serve as 
transition state and (if it does) which reactions would then 
proceed by a lower energy path. 

It is convenient to begin with a Z)2/, structure having all 
carbons coplanar. This could be reached either by a disrota­
tory or conrotatory twist of the methylenes. Figure 14 
shows the symmetry operations which interconvert reactant 
a and the various products, b, c, and d possible when one as­
sumes that the mechanism is disrotatory. Note that a —* b 
consists of a double rotation about fixed olefinic bonds 
while a —*• c and a —* d are isotopically distinct Cope reac­
tions. Reactions c —• d, b —• d, and b —• c are similar to a 
-* b, a —*• c, and a — d, respectively. There are then three 
different types of reaction which could involve a disrotatory 
motion through the Z)2/; form shown. Theorem III requires 
that if this structure is to be the transition state for any of 
the three reactions then the transition vector must be sym­
metric under the operation bxy which leaves all of the mole­
cules unchanged. This requirement limits the possible sym­
metry species to Ag, B lg, B2u, and B3u (see Table I). The to­
tally symmetric representation Ag can be eliminated on the 
basis of II since for each of a —• b, a —* c, and a —»• d Dih 
contains at least one operation which converts reactants 
into products. Each of the remaining symmetry species is 
"allowed", but for different sets of reactions. Big, for exam­
ple, is allowed for reactions a —• b and a —* c since the prop­
erties of this representation (Table I) are compatible with 
the requirements of II and III and the transformations are 
shown in Figure 14. If, however, the Z)2/, structure is actual­
ly the transition state for a —>• b and/or a -» c then theorem 
IV implies the existence of lower energy paths for a —»• d 
and b —• c. This follows from the fact that Big is symmetric 
under the operations i and C2z both of which convert a into 
d and b into c. This information is summarized in diagram 
S, where we use solid lines to indicate passage through a 
transition state and dotted lines to indicate lower energy 
reactions.34 Similar diagrams result from the analysis of the 
B2U and B3U possibilities. These are shown in the first line of 
Table II. (The low energy paths which we show explicitly 

Figure 14. Symmetry interconversion diagram for the disrotatory Cope 
reaction system. 

Table I. Character Table for D2^ and Its Subgroups0 
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"The axes are those shown in Figure 16. The entries are to be in­
terpreted as ±1. 

with dotted lines in 5 have been left implicit in Table II.) 
Note that if one ignores the difference between a —• c and a 
—• d and searches simply for the lowest barrier to a disrota­
tory Cope reaction then only B2u is "allowed". If one is still 
more restrictive and demands that the transition state be 
the lowest barrier to any of the hexadiene isomerizations 
then all three symmetry species are forbidden and so, there­
fore, is the Z)2/, structure. 

A completely analogous argument can be worked out for 
the conrotatory reactions. The stereochemistry is shown in 
Figure 15. As in the case of the disrotatory mechanism 
there are three products which can be reached by a sym­
metric continuation of the path from reactant to transition 
state. Reactant a and the double rotation product b are the 
same as those shown in Figure 14. The new Cope products e 
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Table II. Diagrammatic Representations of the Cope and Cope-
Related Reactions for Which Various Symmetry Species in the Z)2/, 
Family Are Allowed or Forbidden 

Group Disrotatory mechanism Conrotatory mechanism 

D *h 

a b a C a b a b a b a e 

M )H YK }H )H >H 
d c b d c d f e e f b f 

^ 2V 

Cih 

D2 

C2h 

a —»• c 

a b a 

>M > 
d c b 
a b a 

}H ) 
d c b 

a - ^ d 

A„ 

B, 

b ^ d 

c a 

d c 

c a 

d c 

, Bu 

b —* c 

b 

( 
d 

b 

< 
d 

a 

> 
f 

a 
\ 

f 

b 

H 
e 

A, 

B, 
a —*• 

b 

e 

a 

b 

e 

f 

a 

\ 
e 

B2 

Bg 

e a 

I e 

b ^ f 

b - ^ e 

b a 

f b 

b 

< 
f 

e 

< 
f 

Figure 15. Symmetry interconversion diagram for the conrotatory 
Cope reaction system. 

and f are distinct from one another and also from c and d. 
(The transition state is also isotopically distinguishable 
from that in Figure 14.) The diagrams for the allowed sym­
metry species are shown in Table II. Once again the B2U 

species is unique in that it is the only one which is "al­
lowed" for both the Cope reactions. 

Many of the symmetrical structures which have been 
proposed as transition states for the Cope rearrangement 
have point groups which are subgroups of D2h. These are 
the C2h chair favored by Doering and Roth, a C2v boat, a 
D2 twist boat, and a second C2H structure (call it C2h') in 
which the carbon atoms are coplanar. Figure 16 shows that 
each of these structures can be oriented in such a way that 
its symmetry elements share labels with those of D2H- This 
perfect correspondence of symmetry elements allows us to 
superimpose the character tables of the various groups and 
this has been done in Table I. It also allows us to adapt the 
interconversion diagrams of Figures 14 and 15 to each of 
the subgroups of D2h. We need only erase those elements 
from the diagrams which are absent from the subgroups. 
Given these interconversions we can then construct the di­
agrams shown in Table II for each of the subgroups. 

Most of the diagrams in Table II differ from those for 
D2h only in the labeling of the allowed symmetry species. In 
four instances, however, the reduction of the transition state 
symmetry from D2), to that of a subgroup splits the forked 

< * > -

T< 

Figure 16. The Z>2/, family of hypothetical transition states for the 
Cope reaction. The perspective has been modified for the £h and C^ 
structures but orientation of the axes is approximately the same for all 
structures. 

diagram into separate diagrams for uncoupled reactions. In 
C2V, for example, there is no operation which converts a 
into anything other than c, or b into anything other than d. 
Theorem IV, therefore, is inapplicable and the diagrams 
take on the simple pattern shown in the table. 

Goldstein and Benzon, in their elegant scheme for ana­
lyzing the kinetics of the sigmatropic shifts of 1,5-hexa-
diene-^4, have suggested that the C2v, C2h, D2, and C2^ 
structures might serve as transition states for the reactions 
which we denote as a —• c, a —* e, a -» f, and a —• d, respec­
tively. These assignments are consistent with the results of 
Table II. In fact each assignment corresponds to one of our 
fork-free diagrams. This means that not only is each assign­
ment allowed in its own right, but also that there is nothing 
to suggest any mutual incompatibility. (Mutual incompati­
bility might have occurred if two or more of the diagrams 
were forked. One might, for example, have had one forked 
diagram implying that reaction r' went by a lower energy 
path than reaction r, while the second implied the inverse 
ordering.) We note in passing that the Goldstein-Benzon 
analysis does not include a transition state for the direct a 
-* b reaction even though this transformation does occur in 
the two-step reaction a -* e -*• b. On the other hand they do 
include the C2h' transition state to account for a -»• d, a 
transformation which their analysis implies could occur in 
three steps. (These would be a -» c followed by a two-step c 
—• d double rotation similar to the a —• e —* b process.) We 
mention this inconsistency to show that their analysis is 
somewhat less than exhaustive and the utility of the consid­
eration herein in detecting this. 

Whatever the allowedness of a set of transition states one 
can only substantiate them through computation. An exten­
sive MINDO/2 analysis of the 1,5-hexadiene system will be 
given in a future publication.34 We summarize the results. 
On the MINDO/2 surface the C2v boat and C2h chair are 
both metastable and must be interpreted as intermediates 
rather than transition states. Minimizing the energy of C2h' 
(as HB allows one to do during the search procedure) pro­
duces a collapse into D2H symmetry; moreover, the force 
constant matrix of the resulting structure has three negative 
eigenvalues so that both D2h and C2H' can be rejected on 
the basis of M-L, at least on the MINDO/2 surface. The 
calculation in D2 symmetry resulted in two structures (ob­
tained by populating different orbitals), both of which pos­
sessed a force constant matrix with a single negative eigen­
value. The higher energy structure had a transition vector 
of Bi symmetry. This makes it forbidden for the a —• f reac­
tion which the D2 structure is supposed to serve. The lower 
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Figure 17. Hypothetical Did transition state for the Cope reaction. 

energy Z)2 structure has the B2 symmetry transition vector 
required by the theorems. It was also found, however, that 
there was a lower energy path for this reaction which went 
through bicyclo[2.2.0]hexane as an intermediate. 

In addition to the Z)2/, family of structures one can con­
ceive of other families based on hypothetical, high symme­
try transition states. The Z)2 structure of Figure 16 can be 
reached from Z)2A by twisting the allyls out of plane. If one 
continues twisting the allyls until their planes are perpen­
dicular to one another one comes to the Djd structure 
shown in Figure 17. One could then reduce the symmetry to 
Di, by twisting the methylene groups. Rather than attempt 
a complete analysis of this system we confine ourselves to 
the parent Djd structure. The most interesting feature of 
this structure is that it can decompose into products of a 
[1,3] sigmatropic shift as well as into the [3,3] shift and 
double rotation products discussed above. We ask if the Did 
structure can serve as transition state for a [3,3] shift. 

Table III, taken from Wilson, Decius and Cross,35 shows 
the correlation between the symmetry species of Did and its 
subgroup Z)2. If Did were to be the transition state for a 
conrotatory [3,3] shift the symmetry species of the transi­
tion vector would have to correlate with the species allowed 
for the subgroup Z)2. Table II shows this Z)2 species to be 
B2. Since B2 correlates only with the twofold degenerate E 
representation of Did we can rule out (theorem I) Z)2^ as a 
transition state for the conrotatory [3,3] shift. Did is forbid­
den on similar grounds for the disrotatory [3,3] shift which 
we have labeled a —• d. It is allowed, however, for the reac­
tion a —* c. There are in fact two possibilities. The transi­
tion vector can belong to either the A2 or B2 representations 
of D2d, both of which correlate with the Bi representation 
of Z)2. These possibilities, which are suggested by Tables II 
and III, can be confirmed with the aid of transformation di­
agrams similar to Figures 14 and 15. On the other hand 
there are several reactions associated with these symmetry 
species which IV implies would take place by lower energy 
paths. These include the Cope reaction a —» d and also two 
[1,3] sigmatropic shifts for each of the A2 or B2 symmetry 
species. 

V. Concluding Remarks 

One common feature among the reactions we have been 
discussing is the possibility of reaching three or more dis­
tinct equilibrium states by equivalent downhill paths from 
the transition state. In dealing with reactions of this nature 
some authors have assumed that the transition state rested 
on a monkey saddle, i.e., that the various reactant and prod­
uct valleys merged in a common point. Others (M-L) have 
argued that the transition vector was necessarily degenerate 
and that the proposed transition state was thereby forbid­
den. We have shown that neither of these conclusions is jus­
tified. The Z)2/, "transition state" for the Cope reaction is 

Table HI. Correlation between the Symmetry Species of D2^ 
and Z)2 

Dld A1 A2 B1 B2 E 
D2 A B1 A B1 B 2 + B3 

particularly interesting in connection with the M - L argu­
ment. In this example we had four equivalent decomposi­
tion products (a, b, c, d or a, b, e, f) and yet the group in 
question was one which did not possess a degenerate repre­
sentation! 

One elementary conclusion which one can draw from the 
existence of a multiplicity of equivalent decomposition 
paths is that the transition state is forbidden for some of the 
associated reactions. The use of forking diagrams to demon­
strate the plausibility of this result is another concept which 
one can introduce without the need for formal group theory. 
Murrell and Pratt, for example, used forking diagrams for 
just this purpose. The real necessity for group theory arises 
in our opinion when one is trying to decide precisely when a 
given transition state is forbidden or allowed for a specific 
reaction. In answering these questions we do not believe 
there is at present any broadly applicable alternative to the 
use of theorems I-IV. 
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Appendix 

Proof of Lemma in Section II. In a principal axes coordi­
nate system eq 1 takes the form 

EQ = ET + V 2 S M i 2 + / 2 € Q S Q
2 (Al) 

We rewrite this as 

£Q = ET + V2(eQ
c2) + eQ)sQ

2 (A2) 
where 

eQ
t 2 ) = S / M < ? , A Q ) 2 (A3) 

= - ! ^ol (<?O/SQ)2 + H\ki\{q{/sQ)2 (A4) 
i>0 

As the point Q moves toward T along the reaction path (call 
it p) shown in Figure 3 the quantity £Q ( 2 ) approaches a defi­
nite limit e-[(2\ This limit is the (vertical) curvature of the 
surface at T in the direction of the reaction path. Since Ej 
is a proper maximum on the reaction we are guaranteed 
that ejW is nonpositive. We will in fact take it to be nega­
tive: 

eQ
(2> - eT

(2> < 0 ; Q e p (A5) 
Q - T 

The reason is that a path of zero curvature (this would be 
tangent to the contours E = ET) can always be lowered to a 
path of negative curvature (a path between the contours) as 
long as lco does not vanish. (We omit the proof of this 
point.) 
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Since eQ(Y) approaches e j ' 2 ' as Q moves along p toward 
T and since EQ approaches zero as SQ approaches zero 
along any path it follows that the hypercircle C can be as­
signed a sufficiently small but nonzero radius that 

k ( 2 > - e T
( 2 , | < V 2 | e T

( 2 ) ! (A6) 
for all Q on p that lie inside C, and such that 

k l < V2IV
2I (A7) 

for any point within C whether it lies on p or not. 
Now let X be a point on the line joining A to B. We wish 

to show that 

Ex - ET < 0 (A8) 

for all X. Since ex ( 2 ) ^ £ A ( 2 ) it follows that 

Ex - Er < (eA
( 2 ) + e x ) s x

2 < {eT
l 2 ) + 

k t 2 ) - V 2 ) | + IVIsx2 (A9) 
The desired result (A8) follows from (A9) after the intro­
duction of the inequalities (A6) and (A7). This completes 
the argument. 
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The collisional excitation of vibrations in a polyatomic 
molecule by an external atom is an extremely complex 
problem. The quantitative transition probabilities into the 
different sublevels of the various vibrational modes of the 
molecule depend on a vast number of factors:2 (a) static 
factors such as the intermolecular potential function, and 
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